Module : Le Typage Statique avec typing
Objectif
Ce module a pour but de vous introduire au typage statique en Python (aussi appelé "Type Hinting"). Vous apprendrez à annoter votre code avec des indications de type, à utiliser le module typing pour des types complexes, et à comprendre les avantages de cette pratique pour la robustesse et la lisibilité du code.
1. Qu'est-ce que le Typage Statique ?
Python est un langage à typage dynamique. Cela signifie que le type d'une variable est déterminé à l'exécution, et qu'une même variable peut contenir des objets de types différents au cours de la vie du programme.
x = 10 # x est un int
x = "hello" # Maintenant, x est un str
Le typage statique, à l'inverse, est un système où les types des variables sont connus avant l'exécution (à la "compilation").
Python, depuis la version 3.5, permet d'ajouter des indications de type (type hints) optionnelles au code. C'est une forme de typage statique graduel.
Important : L'interpréteur Python, par défaut, ignore complètement ces annotations. Elles n'ont aucun impact sur l'exécution du code. Leur utilité vient d'outils externes appelés analyseurs de type statique (comme mypy, pyright, pyre) qui lisent ces annotations pour détecter des erreurs de type avant même que vous ne lanciez le programme.
2. Syntaxe de Base
a. Annoter des Variables
On utilise les deux-points (:) après le nom de la variable, suivi du type.
nom: str = "Alice"
age: int = 30
est_majeur: bool = True
prix: float = 19.99
b. Annoter des Fonctions
- Pour les arguments :
nom_argument: type - Pour la valeur de retour :
-> type_retour
def saluer(nom: str) -> str:
return f"Bonjour, {nom}"
def addition(a: int, b: int) -> int:
return a + b
# Pour une fonction qui ne retourne rien, on utilise -> None
def afficher_message(message: str) -> None:
print(message)
3. Le Module typing
Pour des types plus complexes que int, str, etc., on utilise le module typing.
a. Types Composés (List, Dict, Tuple, Set)
Depuis Python 3.9+, on peut utiliser les types standards (list, dict) directement. Pour les versions antérieures, il faut importer List, Dict, etc., depuis typing.
# Python 3.9+
nombres: list[int] = [1, 2, 3]
scores: dict[str, int] = {"Alice": 10, "Bob": 8}
coordonnees: tuple[int, float, int] = (10, 20.5, 5)
# Python < 3.9 (toujours valide)
from typing import List, Dict, Tuple, Set
nombres: List[int] = [1, 2, 3]
scores: Dict[str, int] = {"Alice": 10, "Bob": 8}
b. Union et Optional
Union[type1, type2, ...]: Indique qu'une variable peut être de l'un des types listés.Optional[type]: Un raccourci pourUnion[type, None]. Indique qu'une variable peut être du type spécifié ouNone.
from typing import Union, Optional
# id peut être un int ou un str
identifiant: Union[int, str] = 123
identifiant = "user-abc"
# nom_utilisateur peut être une chaîne ou None
nom_utilisateur: Optional[str] = "Alice"
nom_utilisateur = None
c. Any
Any est un type spécial qui indique à l'analyseur de type que n'importe quel type est autorisé. C'est une "porte de sortie" du système de typage. On l'utilise quand on ne peut vraiment pas connaître le type ou pour migrer progressivement un projet vers le typage statique.
from typing import Any
def traiter_donnees_inconnues(data: Any) -> Any:
# L'analyseur de type n'émettra aucune alerte ici
print(data)
return data
d. Callable
Pour annoter des fonctions passées en argument. La syntaxe est Callable[[type_arg1, type_arg2], type_retour].
from typing import Callable
def appliquer_operation(a: int, b: int, operation: Callable[[int, int], int]) -> int:
return operation(a, b)
def addition(x: int, y: int) -> int:
return x + y
resultat = appliquer_operation(10, 5, addition) # OK
4. Utiliser un Analyseur de Type : mypy
mypy est l'analyseur de type statique le plus populaire pour Python.
-
Installation :
pip install mypy -
Créer un fichier de test
test_types.py:def saluer(nom: str) -> str:
return f"Bonjour, {nom}"
# Appel correct
saluer("Alice")
# Appel incorrect
# mypy va détecter que 123 n'est pas un str
saluer(123) -
Lancer
mypy:mypy test_types.py -
Résultat de
mypy:test_types.py:8: error: Argument 1 to "saluer" has incompatible type "int"; expected "str"
Found 1 error in 1 file (checked 1 source file)mypya trouvé l'erreur avant même l'exécution du code !
5. Avantages du Typage Statique
- Détection précoce des bugs : C'est l'avantage principal. Les erreurs de type sont parmi les plus courantes en programmation.
- Amélioration de la lisibilité et de la documentation : Les annotations de type servent de documentation. On sait immédiatement ce qu'une fonction attend comme arguments et ce qu'elle retourne.
- Meilleur support des IDE : Les éditeurs de code comme VS Code utilisent les annotations pour fournir une auto-complétion plus intelligente, des refactorings plus sûrs et une meilleure navigation dans le code.
- Architecture plus robuste : Le fait de penser aux types dès la conception pousse à créer des interfaces de données plus claires et une architecture plus solide.
6. Annotations pour les Classes Personnalisées
On peut utiliser les classes que l'on définit comme des types.
class Personne:
def __init__(self, nom: str, age: int):
self.nom = nom
self.age = age
def souhaiter_anniversaire(p: Personne) -> None:
p.age += 1
print(f"Joyeux anniversaire {p.nom} ! Vous avez maintenant {p.age} ans.")
# mypy vérifiera que l'objet passé à la fonction est bien une instance de Personne
# (ou une sous-classe compatible).
alice = Personne("Alice", 30)
souhaiter_anniversaire(alice)
Références circulaires et Forward References
Parfois, une classe a besoin de s'annoter elle-même (ex: une méthode qui retourne une nouvelle instance de la classe), ou deux classes se référencent mutuellement. Si le type n'est pas encore défini au moment où Python lit l'annotation, cela cause une NameError.
La solution est d'utiliser une "forward reference", en mettant le nom du type entre guillemets.
class Node:
def __init__(self, valeur: int):
self.valeur = valeur
# Le type 'Node' n'est pas encore complètement défini ici.
# On utilise donc des guillemets.
self.suivant: Optional['Node'] = None
def set_suivant(self, autre_node: 'Node') -> None:
self.suivant = autre_node
Conclusion
Le typage statique est une addition majeure à l'écosystème Python qui comble de nombreuses lacunes du typage dynamique, en particulier pour les projets de grande taille. En ajoutant des annotations de type et en utilisant un analyseur comme mypy, vous rendez votre code plus sûr, plus lisible et plus facile à maintenir, sans perdre la flexibilité qui fait la force de Python. C'est aujourd'hui une pratique standard dans le développement Python professionnel.